本实用新型的(B)方案见附图3,催化裂化提升管反应器bao括底部预提升区(I),中部催化剂与油气直接接触反应区(II)和顶部反应产物与催化剂快速分离区(III),其特征在于提升管反应器底部(I)是扩大管(20b),而扩大管(20b)是通过内输送管(25b)与提升管(27b)串连的,扩大管(20b)的上部为气室E,其下部为催化剂的密相床(3b),内输送管(25b)的入口端(24b)见附图4(A--C),出口端见附图4(D--F),且内输送管(25b)的入口端(24b)位于再生斜管(29b)端口之上方;其距离H>5mm,内输送管(25b)出口端(26b)伸出扩大管(20b)之外部并位于原料油喷嘴(28b)之下方,提升气体管(23b)位于内输送管(25b)入口端(24b)之上方的气室(E)内,距内输送管入口端距离L>5mm,流化气体管和流化气体分布环管(22b)设置在再生斜管(29b)下方的扩大管(20b)内,流化气体分布环管(22b)上有孔心向下的许多小孔,流化气体分布环距再生斜管(29b)端口距离Lb>20mm。
提升管上端出口处设有气一固快速分离构件,又称为提升管反应终止设施,其目的是使催化剂与油气快速分离以抑制反应的继续进行。快速分离构件有多种形式,比较简单的有半圆帽形、T字形的构件。为了提高分离效率,近年来较多地采用初级旋风分离器,并将其升气管尽可能靠近沉降器顶部的旋风分离器人口,缩短油气在高温下的接触时间,减少二次反应,防止在沉降器、油气管线及分馏塔底的器壁上结成焦块。这样可使干气产率降低1%以上,液体产品收率相应增加。
提升管反应器的发展.提升管反应器已广泛应用于重油催化裂化,但仍还有不少值得研究和改进之处,特别是为了提高轻质油收率并直接生产清洁油品,近年来出现了不同形式反应器系统的重油催化裂化工艺技术,如两段提升管催化裂化技术(TSRFCC)、多产异构烷烃催化裂化技术(MIP)以及催化裂化汽油辅助反应器改质技术等。